-module(day8). -export([solve/1]). solve(Input) -> Grid = parse_grid(Input), {map_size(visible_trees(Grid)), scenery(Grid)}. scenery({_, H, W} = Grid) -> Visible0 = #{}, %Left Visible1 = range_fold(0, H-1, fun(Row, Acc) -> element(2, grid_traverse(fun scenery_score/3, {[], Acc}, Grid, {0, Row}, {1, 0})) end, Visible0), %Right Visible2 = range_fold(0, H-1, fun(Row, Acc) -> element(2, grid_traverse(fun scenery_score/3, {[], Acc}, Grid, {W-1, Row}, {-1, 0})) end, Visible1), %Top Visible3 = range_fold(0, W-1, fun(Col, Acc) -> element(2, grid_traverse(fun scenery_score/3, {[], Acc}, Grid, {Col, 0}, {0, 1})) end, Visible2), %Bottom Visible4 = range_fold(0, W-1, fun(Col, Acc) -> element(2, grid_traverse(fun scenery_score/3, {[], Acc}, Grid, {Col, H-1}, {0, -1})) end, Visible3), lists:max(maps:values(Visible4)). visible_trees({_, H, W} = Grid) -> %top Visible0 = #{}, %Left Visible1 = range_fold(0, H-1, fun(Row, Acc) -> element(2, grid_traverse(fun visible_path/3, {-1, Acc}, Grid, {0, Row}, {1, 0})) end, Visible0), %Right Visible2 = range_fold(0, H-1, fun(Row, Acc) -> element(2, grid_traverse(fun visible_path/3, {-1, Acc}, Grid, {W-1, Row}, {-1, 0})) end, Visible1), %Top Visible3 = range_fold(0, W-1, fun(Col, Acc) -> element(2, grid_traverse(fun visible_path/3, {-1, Acc}, Grid, {Col, 0}, {0, 1})) end, Visible2), %Bottom range_fold(0, W-1, fun(Col, Acc) -> element(2, grid_traverse(fun visible_path/3, {-1, Acc}, Grid, {Col, H-1}, {0, -1})) end, Visible3). visible_path(Tree, Position, {MaxHeight, Visible}) when Tree > MaxHeight -> {Tree, Visible#{Position => []}}; visible_path(_Tree, _Position, State) -> State. % horrible name, calculate the view distance in one direction tree_stack(_Tree, []) -> 0; tree_stack(Tree, [Other|_Rest]) when Other >= Tree -> 1; tree_stack(Tree, [_Other|Rest]) -> tree_stack(Tree, Rest) + 1. scenery_score(Tree, Position, {TreeStack, Trees}) -> Distance = tree_stack(Tree, TreeStack), NewTrees = Trees#{Position => Distance * maps:get(Position, Trees, 1)}, {[Tree|TreeStack], NewTrees}. grid_traverse(Fun, AccIn, Grid, {XPos, YPos}, {XVec, YVec}) -> case grid_at(Grid, XPos, YPos) of error -> AccIn; {ok, Item} -> grid_traverse(Fun, Fun(Item, {XPos, YPos}, AccIn), Grid, {XPos+XVec, YPos+YVec}, {XVec, YVec}) end. parse_grid(Data) -> {W, H} = dimensions(Data), {Data, H, W}. dimensions(Grid) -> dimensions(Grid, 1, 0). dimensions(<<>>, Height, Width) -> {Width, Height}; dimensions(<<$\n>>, Height, Width) -> {Width, Height}; dimensions(<<$\n, Rest/binary>>, Height, _Width) -> dimensions(Rest, Height+1, 0); dimensions(<<_Digit, Rest/binary>>, Height, Width) -> dimensions(Rest, Height, Width+1). grid_at({_Data, _H, _W}, X, Y) when X < 0 orelse Y < 0 -> error; grid_at({_Data, H, W}, X, Y) when X >= W orelse Y >= H -> error; grid_at({Data, _H, W}, X, Y) -> Index = X + Y * (W+1), <<_:Index/binary, Tree, _/binary>> = Data, {ok, Tree-$0}. range_fold(End, End, Fun, Acc) -> Fun(End, Acc); range_fold(Start, End, Fun, Acc) when Start < End -> range_fold(Start+1, End, Fun, Fun(Start, Acc)); range_fold(Start, End, Fun, Acc) when Start > End -> range_fold(Start-1, End, Fun, Fun(Start, Acc)).